Time: 3 hours

Maximum marks: 50

All questions are compulsory.

NOTATIONS: (1) \mathbb{R} : set of all real numbers, (2) \mathbb{C} : set of all complex numbers, (3) \mathbb{C}^n : the *n*-dimensional complex number space, (4) \mathbb{R}^n : the *n*-dimensional real number space, (5) [a, b]: closed and bounded interval in \mathbb{R} , (6) For a given $\mathbf{a} = (a_1, a_2, \ldots, a_n) \in \mathbb{C}^n$ and $\mathbf{r} = (r_1, r_2, \ldots, r_n) \in \mathbb{R}^n$ with $r_i > 0$ for all $1 \le i \le n$,

$$\mathbb{D}^n(\mathbf{a},\mathbf{r}) := \{ \mathbf{z} = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : |z_i - a_i| < r_i \text{ for all } 1 \le i \le n \}.$$

For $n = 1, a \in \mathbb{C}$ and a positive $r \in \mathbb{R}$, we will write $\mathbb{D}(a, r)$, instead of $\mathbb{D}^1(\mathbf{a}, \mathbf{r})$. (7) $\|\cdot\|_K$ denotes the supremum over a given set K, (8) $A \times B$: cartesian product

of two sets A and B, (9) $\exp(z)$: the exponential function e^z for $z \in \mathbb{C}$.

1. (a) Prove that the function

$$I(h) = \exp\left(\int_0^1 \log \frac{h^2 + x^2}{x^2} dx\right)$$

from [0,1] to $[1,\infty)$ is well-defined, strictly increasing and continuous, with I(0) = 1. (5 marks)

(b) Consider a compact subset K of \mathbb{C} , a closed subset B of K and $a \in K$. Moreover, assume that there is $\rho > 0$ such that the set $\{t \in [0, \rho] : \mathbb{T}(a, t) \cap B \neq \emptyset\}$ has positive Lebesgue measure m ($\mathbb{T}(a, t)$ is the circle with radius t, centered at a). Prove that for every polynomial $P : \mathbb{C} \to \mathbb{C}$ and every real number r > 0,

$$||P||_{\mathbb{D}(a,r)} \le ||P||_B I(\alpha)^{\deg(P)}$$

where $\deg(P)$ denotes the degree of polynomial $P, I(\alpha)$ is as defined in part (a), and

$$\alpha = \sqrt{\frac{\rho + r - m}{m}}$$

(12 marks)

- (c) Given an open set $D \subset \mathbb{C}^n$ $(n \ge 2)$, let $f : D \to \mathbb{C}$ be separately holomorphic and locally bounded on D. Show that f is continuous on D. (4 marks)
- 2. (a) Let the complex-valued function F(z, s) be defined for $(z, s) \in \Omega \times [0, 1]$, where Ω is an open set in \mathbb{C} . Also suppose that F(z, s) is continuous in $\Omega \times [0, 1]$ and is holomorphic in Ω for each $s \in [0, 1]$. Show that the function f defined on Ω by

$$f(z) = \int_0^1 F(z,s)ds$$

is holomorphic.

(4 marks)

(b) Using part (a), prove that if f is a complex-valued holomorphic function defined on the domain

$$\left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, \frac{1}{2} < |z_2| < 1 \right\} \bigcup \left\{ (z_1, z_2) \in \mathbb{C}^2 : |z_2| < 1, \frac{1}{2} < |z_1| < 1 \right\},\$$

then f has an analytic continuation to the unit bidisc $\mathbb{D}^2(0, 1)$, where $\mathbf{0} = (0, 0) \in \mathbb{C}^2$, $\mathbf{1} = (1, 1) \in \mathbb{R}^2$. (7 marks)

3. (a) Let D be an open connected set in \mathbb{C}^n $(n \ge 2)$ and f be a non-constant, complex-valued holomorphic function defined in D. Then show that $f(\Omega)$ is open for any open set $\Omega \subset D$. (4 marks)

(b) Suppose $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}^2$ is a holomorphic map, defined by

$$f(z) = (z(z-1), z^2(z-1)).$$

Determine, with justification, whether f is open or not (we say f is open if $f(\Omega)$ is open for all open subsets Ω of $\mathbb{C} \setminus \{1\}$). (4 marks)

4. (a) Find the value of the integral

$$\int_{|z_1|=1} \int_{|z_2|=1} \frac{\exp(z_1 z_2)}{\left|(z_1 - 2)(z_2 - 2)\right|^2} dz_2 dz_1$$

(5 marks)

(b) Determine, with justification, the maximum of the following sets:

$$\{|2z_1 + 10z_2 + 11z_3| : (z_1, z_2, z_3) \in \mathbb{C}^3 \text{ and } |z_1|^2 + |z_2|^2 + |z_3|^2 \le 1\}$$

and

$$\left\{ \left| z_1^2 z_2 z_3 - z_2^2 z_1 z_3 + z_3^2 z_1 z_2 \right| : (z_1, z_2, z_3) \in \mathbb{C}^3 \text{ and } |z_1| \le 1, |z_2| \le 1, |z_3| \le 1 \right\}.$$

(2.5 marks+2.5 marks)

Best wishes!